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Dreams of A. Einstein: Unifications of interacting forces of nature

1920’s known forces: Gravity and Electro-Magnetic forces(Matters)
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General Relativity: Einstein-Hilbert action

S(g) =
∫

M4
R
√−gd4x

δS = 0

Rµν − 1

2
Rgµν = 0.
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Electro-Magnetic forces obey Maxwell equations:

S =
∫
−1

4
FµνF

µν +
1

4
JµAµ

F = dA = ΣFµνdxµ ∧ dxν , Fµν = ∂µAν − ∂νAµ

dF = 0, ∗d(∗F ) = J.
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Unification of gravity and electro-magnetic fields: Kaluza-Klein compactifications

M5 = M4 × S1

ds2 = Σgmndxmdxn

= e−2Φ/3Σgµνdxµdxν + e4Φ/3(dθ + Aµdxµ)2

gµν(x, θ) = Σgµν;ne
2πnθ

Aµ(x, θ) = ΣAµ;ne
2πnθ
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Only keeping the lightest modes: gµν;0, Aµ;0

The Einstein-Hilbert action

S(g) =
∫

M5
R
√−gd5x

reduces to the Einstein-Hilbert-Yang-Mills action

S(g, A, Φ) =
∫

M4

√−gd4x(R + |dΦ|2 − 1

2
FµνF

µν)

Conclusion:

We have unified gravity-electro-magnetic forces by using a five dimensional gravity!
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String/M Theory is to realize A. Einstein’s dream in broadest generality

We have four fundamental forces: gravity and matters: electro-magnetic, weak and strong

Matters obey laws in gauge theories with gauge groups: U(1), SU(2)× U(1), SU(3)× SU(2)× U(1)

Standard models were constructed in 1970’s and it fits with experiments very well
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Gravity is generalized to super-gravity to incorporate super-symmetry

SUGRA is a local gauge theory with gauge symmetry the SUSY algebra
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M Theory: 11 dimensional Super-gravity

Fields: a metric GMN , a gravitino ψM , and a three form AMNP

The bosonic action of the 11D Supergravity:

2kS =
∫

d11x
√
−G(R− 1

2
|F4|2)− 1

6

∫
A3 ∧ F4 ∧ F4.
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Supersymmetric solutions:

δΨM = ∇Mε +
1

12
(ΓMF 4 − 3F 4

M)ε = 0,

ε are Killing spinors.
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Type IIA String theory from M theory by dimensional reduction

M11 = M10 × S1

ds2 = Σgmndxmdxn

= e−2Φ/3Σgµνdxµdxν + e4Φ/3(dθ + Aµdxµ)2

A11
µνρ = Aµνρ, A

11
µν11 = Bµν
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The bosonic action of Type IIA is:

S = SNS + SR + SCS

SNS =
1

2k2

∫
d10x

√−g(R + 4∂µΦ∂µΦ− 1

2
|H3|2),

SR = − 1

4k2

∫
d10x

√−g(|F2|2 + |F4|2),

SCS = − 1

k2

∫
B2 ∧ A4 ∧ A4.
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Super-symmetric solutions

δΨµ = (∇µ − 1

4
H3

µΓ11 − 1

8
eΦFνρΓ

νρ
µ Γ1 +

1

8
eΦF 4Γµ)ε = 0,

δλ = (−1

3
Γµ∂µΦΓ11 +

1

6
H3 − 1

4
eΦF 2 +

1

12
eΦF 4Γ11)ε = 0,

dH = 0.
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Compactifications of 10D theory to a 4D theory

M1,9 = R1,3 ×M6

ε1,2 = Σξ1,2 ⊗ η1,2

No fluxes: Covariant constant spinor and Calabi-Yau manifold

∇η = 0

Yau’s theorem: For a Kahler manifold M with c1(TM) = 0, there exists a Ricci flat metric.
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Moduli space of Calabi-Yau manifolds

Symplectic structures ω and complex structures Ω

M = MK ×MC ⊂ H1,1(M)×H2,1(M)
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Special geometry over M

M is a Kahler manifold with the Kahler metric:

ds2 =
1

V

∫

M6
gab̄gcd̄(δgacδgb̄d̄ + (δgad̄δgcb̄ − δBad̄δBcb̄)d

6x.

It is a Kahler metric with Kahler potential:

eK2,1

= −i
∫

Ω ∧ Ω̄,

eK1,1

= −i
∫

ω ∧ ω ∧ ω.

Much of developments in string theory depend on this special geometry!
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Mirror symmetry: one Calabi-Yau M1 is mirror to another Calabi-Yau M2

MK(M1) = MC(M2).

Web of dualities of string theories
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Turning on fluxes: Nervu-Schwarz fluxes and Ramond-Ramond fluxes

Super-symmetric solutions

δΨµ = (∇µ − 1

4
H3

µΓ11 − 1

8
eΦFνρΓ

νρ
µ Γ1 +

1

8
eΦF 4Γµ)ε = 0,

δλ = (−1

3
Γµ∂µΦΓ11 +

1

6
H3 − 1

4
eΦF 2 +

1

12
eΦF 4Γ11)ε = 0,

dH = 0.
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Existence of two non-vanishing spinors: an almost generalized SU(3)× SU(3) structure

Structure group reduction from SO(6, 6) to SU(3, 3)

We have two SU(3) invariant spinors ε1,2

ρ = Σε̄2Γ
µ1...µpε1dxµ1 ∧ ... ∧ dxµp

ε1 = ε2, ρ = 1 + ω1,1 + Ω3,0 + Hodge dual
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Supersymmetric solutions are integrable generalized SU(3)× SU(3) structures

dH(ρ) = 0,

dH ρ̂ = ∗F,

dH = d + H ∧ .

Those are generalized Maxwell-Hodge equations.
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The moduli space of almost generalized SU(3)× SU(3) structures over a vector space:

M = SO(6, 6)/SU(3, 3) = Uρ/C
∗

Over a manifold we have a bundle:

Uρ/C
∗ → E → M6

The space of generalized SU(3)× SU(3) structures is:

M̄ = {Φ ∈ E(M6)|dΦ = 0}
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Turning on all fluxes: the space of N = 1 string vacua is:

M̄ = {Φ ∈ E(M6)|dHΦ = 0, dH ρ̂ = ∗F}
Finally, the moduli space of N=1 string vacua is:

M = M̄/ ¯Diff0(M6)
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The Period map: Taking dH cohomology classes

Gualtieri: the ∂H ∂̄H lemma is true for a generalized Kahler manifold

Goto: If the ∂H ∂̄H lemma is true, then the period map is injective.

M̄ = {Φ ∈ E(M6)|dHΦ = 0, dH ρ̂ = 0}
is included in the space of dH cohomologies
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Special geometries over M

Constant symplectic structure over M

ω(Φ1, Φ2) =
∫

M6
< Φ1, Φ2 >,

Mukai Pairing :< Φ1, Φ2 >= ΣpΦ1,p ∧ Φ2,n−p.

We have: dω = 0,

ω = ΣdxK ∧ dyK .
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Complex structure over M

Stable spinor decomposed into pure spinors:Φ = φ + φ̂

X : ρ = φ + φ̂ → ρ̂ = −iφ + iφ̄,

DX.DX = −Id.

I = DXdefines an intregrable complex structure overM

ω(Φ, Φ̄) = (Z̄KFK − ZKF̄K),

ZK , FK are two independent complex coordinates.
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Hitchin functional and the Kahler metric over M

H(Φ) =
∫

M6
−i < φ, φ̄ > .

The Kahler metric over M is:

ds2 = Σ∂αβHdχα ⊗ dχβ.

The Kahler potential is:K = − log H.

We finally have:

e−K(Φ) = H(Φ) = iω(Φ, Φ̄) = i(Z̄KFK − ZKF̄K).
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Topological strings

The moduli space is acted by mapping class groups, Diff+(M)/Diff+
0 (M)×H2(M,Z)

The mapping class group acts on the space of cohomologies which is a vector space

This gives a flat connection on the moduli space of generalized Calabi-Yau manifold (Gauss-Manin connection)

We can construct topological strings over a generalized Calabi-Yau manifold.

Q: Can we generalize Ooguri-Strominger-Vafa’s conjecture to generalized Calabi-Yau manifolds?
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Flux compactifications and Supersymmetry breaking

By introducing RR fluxes, we break half of supersymmetries

dHρ = 0,

dH ρ̂ = ∗F.

RR fluxes are coupled with D-branes, generalized D-branes are generalized sub-manifolds

Q: How about the moduli space and what are the BCFT?

Q: Can we build more realistic standard model with all fluxes turning on?

28



Mirror symmetry for generalized Calabi-Yau manifolds

It is just exchanging two generalized complex structures

In the case of Calabi-Yau, it is exchanging complex and symplectic structures
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Q: How about compactifications of M theory to a seven dimensional manifolds?

The answer would be generalized G2 manifolds.

Special geometries for generalized G2 structures

Still have stable spinors and constant symplectic forms and Hitchin functional

Q: Are they giving the same set of 4D N=1 string vacua?

A: They should be the same and this is duality!

30


